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Summary

We present new sample-compression guarantees for any

bounded losses and validate empirically their tightness when ap-

plied to deep neural networks.

Background and notation

1. A dataset S = {(xi, yi)}n
i=1 sampled i.i.d. from an unknown

distribution D over X × Y .

2. A family of predictor H of the form h : X → Y .

3. A learning algorithm A that returns a predictor A(S) ∈ H.

4. A loss function ` : H × X × Y → R.
5. The generalization loss of a predictor

LD(h) = E(x,y)∼D `(h, x, y).
6. The empirical loss of a predictor L̂S(h) = 1

n

∑n
i=1 `(h, xi, yi).

Sample compression theory

A predictor is called a sample-compressed predictor if it can be

expressed as a function of a subset of S. To do so, we need :

1. A compression set Si ⊆ S, defined by a vector of indices

i = (i1, . . . , i|i|) such that 1 ≤ i1 ≤ . . . i|i| ≤ n. We denote its

complement Sic = S \ Si.

2. A reconstruction function R that takes a compression set and

a message to output a predictor.

We denote a sample-compressed predictor R(Si).

Example of sample compression : the SVM

The support vectors of the SVM form its compression set.

Figure 1. By Larhmam - Own work, CC BY-SA 4.0,

https://commons.wikimedia.org/w/index.php?curid=73710028.

Main results

We present new sample-compression generalization results that

hold for any bounded losses and some unbounded losses,

do not depend on the number of parameters of the neural network,

are tight and easily computable.

These new results can be applied

1. to classification problems, regression problems and more,

2. on a variety of models, such as MLPs and transformers (with the help of the

meta-algorithm Pick-To-Learn [4]),

and still give tight and non-vacuous guarantees in practice.

Theorem 1 : NewGeneral Sample Compression bound

For any distribution D over X × Y , for any set of vectors of indices I , for any distri-

bution PI over I , for any comparator function ∆ : R×R → R and for any δ ∈ (0, 1],
with probability at least 1 − δ over the draw of S ∼ Dn, we have

∀i ∈ I : ∆
(
L̂Sic(R(i)), LD(R(i))

)
≤ 1

n − |i|

log E∆(n, i) + log
 1

PI(i)δ


with

E∆(n, i) = E
Ti∼D|i|

E
Tic∼Dn−|i|

e
(n−|i|)∆

(
L̂Tic(R(Ti)),LD(R(Ti))

)
.

In particular, this bound holds for the binary Kullback-Leibler divergence kl, which is

known to be optimal for losses in the range [0, 1], as per the results of [3].

Corollary 1 : Unbounded losses with the linear distance

In the setting of Theorem 1, for any λ > 0, with ∆λ(q, p) = λ(p − q), with a σ2-sub-

Gaussian loss function ` : H × X × Y → R, with probability at least 1 − δ over the

draw of S ∼ Dn, we have

∀i ∈ I : LD(R(Si)) ≤ L̂Sic(R(Si)) +
λσ2

2
+ 1

λ(n − |i|)
log

 1
PI(i)δ

.

Further extensions

In the future, we will extend our work to :

1. Any unbounded losses under the hypothesis-dependent range condition [2]

2. Any unbounded losses under model-dependent assumptions [1]

3. Distributions with more general tail behaviors [5]

Experiments on Binary MNIST Problems

Dataset : Binary classification problems created from MNIST

(≈11000 datapoints)

Model type : CNN with 1.1 million parameters

Training algorithm : Pick-To-Learn

Dataset Validation error Test error kl bound |i| Baseline test error

MNIST08 0.33±0.17 0.25±0.10 5.05±0.16 92.0±3.6 0.22±0.05

MNIST17 0.20±0.08 0.38±0.16 4.33±0.21 84.0±5.2 0.17±0.03

MNIST23 0.39±0.12 0.27±0.10 8.20±0.34 175.6±9.5 0.16±0.05

MNIST49 0.82±0.11 0.77±0.17 10.52±0.37 237.0±11.0 0.44±0.07

MNIST56 0.46±0.12 0.47±0.15 6.29±0.22 117.0±5.2 0.30±0.08

Table 1. All metrics presented are in percents (%), with the exception of |i|.

Preliminary results on Amazon polarity

1. Dataset : Binary classification problems on Amazon Polarity

dataset (we use 10%, 360000 datapoints)

2. Data type : textual reviews

3. Model type : DistilBERT [6] with 66 million parameters

4. Training algorithm : Pre-training on 50% of the dataset, then

Pick-To-Learn on the other half.

Train method Train error Validation error Test error kl bound
P2l 3.04±0.77 3.66±0.84 5.18±0.14 10.23±1.91

Baseline 2.34±0.79 3.24±0.82 4.25±0.06 -

Table 2.All metrics present are in percent (%). The results for the baseline

were computed on 2 seeds instead of 5.

Conclusion

We presented a new general sample-compression theorem for

real-valued losses and empirically verified its tightness for deep

neural networks. In future experiments, we wish to tackle re-

gression problems with the help of Corollary 1 and multi-class

classification problems.
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