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Summary

We present new sample-compression guarantees for any
bounded losses and validate empirically their tightness when ap-
plied to deep neural networks.

Background and notation

1. Adataset S = {(x;, y;)}I*; sampled i.i.d. from an unknown
distribution D over X x Y.

. A family of predictor H of the form h: X — V.

A learning algorithm A that returns a predictor A(S) € H.
Aloss function/: Hx X x Y — R.

The generalization loss of a predictor

Lp(h) = Egy~p lh,x,y).

4. The empirical loss of a predictor Lg(h) = LS l(hy i, y).
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Sample compression theory

A predictor is called a sample-compressed predictor if it can be
expressed as a function of a subset of S. To do so, we need :

1. A compression set S; C S, defined by a vector of indices
i=(7,...,45) such that 1 <4 < ...¢5 < n. We denote its
complement Si = S\ S;.

2. Areconstruction function R that takes a compression set and
a message to output a predictor.

We denote a sample-compressed predictor R(Sj).

Example of sample compression : the SVM
The support vectors of the SVM form its compression set.
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Figure 1. By Larhmam - Own work, CC BY-SA 4.0,
https:/commons.wikimedia.org/w/index.php?curid=/3710028.

Main results

We present new sample-compression generalization results that

= hold for any bounded losses and some unbounded losses,
- do not depend on the number of parameters of the neural network,
= are tight and easily computable.

These new results can be applied

1. to classification problems, regression problems and more,

2. on a variety of models, such as MLPs and transformers (with the help of the
meta-algorithm Pick-To-Learn [4]),

and still give tight and non-vacuous guarantees in practice.

Theorem 1 : New General Sample Compression bound

For any distribution D over X x Y, for any set of vectors of indices I, for any distri-
bution Py over I, for any comparator function A : R xR — R and for any ¢ € (0, 1],
with probability at least 1 — § over the draw of S ~ D", we have

Viel: A(Zgic(ﬂl(i)), Lp(R(i))) < : _log Ea(n,i) + log (
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In particular, this bound holds for the binary Kullback-Leibler divergence kl, which is
known to be optimal for losses in the range |0, 1], as per the results of [3].

Corollary 1 : Unbounded losses with the linear distance

In the setting of Theorem 1, for any A > 0, with A\(g,p) = A(p — q), with a o*-sub-
Gaussian loss function ¢ : H x X x Y — R, with probability at least 1 — § over the
draw of S ~ D" we have

Viel: ,CD(R(SI)) < Zgic(fR(Si)) | A; | )\(nl_ |1D log (PIil)g)

Further extensions

In the future, we will extend our work to :

1. Any unbounded losses under the hypothesis-dependent range condition |2]
2. Any unbounded losses under model-dependent assumptions [1]
3. Distributions with more general tail behaviors [ 5]

Experiments on Binary MNIST Problems

- Dataset : Binary classification problems created from MNIST
(=11000 datapoints)

- Model type : CNN with 1.1 million parameters
= Training algorithm : Pick-To-Learn

Dataset  Validation error Test error  kl bound i Baseline test error
MNISTO8 0.33£0.17 0.25+£0.10 5.05+0.16 92.0+3.6 0.22+0.05
MNIST17  0.20£0.08 0.38£0.16 4.33+£0.21 84.0+£5.72 0.17/+£0.03
MNIST23  0.39£0.12 0.27/£0.10 8.20+£0.34 1/5.6£9.5 0.16+0.05
MNIST49  0.82+0.11 0./74£0.17 10.52+0.37 23/7.0+11.0 0.44+0.07
MNIST56  0.46£0.12 047+£0.15 6.29+0.22 11/.0+£5.2 0.30+0.08

Table 1. All metrics presented are in percents (%), with the exception of [i].

Preliminary results on Amazon polarity

1. Dataset : Binary classification problems on Amazon Polarity
dataset (we use 10%, 360000 datapoints)

2. Data type : textual reviews
3. Model type : DistilBERT [6] with 66 million parameters

4. Training algorithm : Pre-training on 50% of the dataset, then
Pick-To-Learn on the other half.

Train method Train error Validation error Test error  kl bound

P2 3.04+0.7/7 3.66£0.84 5.168+£0.14 10.25£1.91
Baseline  2.34+0.79 3.2440.82 4.25+0.06 -

Table 2. All metrics present are in percent (%). The results for the baseline
were computed on 2 seeds instead of 5.

Conclusion

We presented a new general sample-compression theorem for
real-valued losses and empirically verified its tightness for deep
neural networks. In future experiments, we wish to tackle re-
oression problems with the help of Corollary 1 and multi-class
classification problems.
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