

# Sample compression unleashed: New generalization bounds for real valued losses



Mathieu Bazinet <sup>1</sup> Valentina Zantedeschi <sup>2</sup> Pascal Germain <sup>1</sup>

<sup>1</sup>Université Laval <sup>2</sup>ServiceNow Research

## Summary

We present new sample-compression guarantees for any bounded losses and validate empirically their tightness when applied to deep neural networks.

## **Background and notation**

- 1. A dataset  $S = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^n$  sampled *i.i.d.* from an unknown distribution  $\mathcal{D}$  over  $\mathcal{X} \times \mathcal{Y}$ .
- 2. A family of predictor  $\mathcal{H}$  of the form  $h: \mathcal{X} \to \mathcal{Y}$ .
- 3. A learning algorithm A that returns a predictor  $A(S) \in \mathcal{H}$ .
- 4. A loss function  $\ell : \mathcal{H} \times \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ .
- 5. The generalization loss of a predictor  $\mathcal{L}_{\mathcal{D}}(h) = \mathbb{E}_{(\boldsymbol{x},y)\sim\mathcal{D}}\,\ell(h,\boldsymbol{x},y).$
- 6. The empirical loss of a predictor  $\widehat{\mathcal{L}}_S(h) = \frac{1}{n} \sum_{i=1}^n \ell(h, \boldsymbol{x}_i, y_i)$ .

# Sample compression theory

A predictor is called a sample-compressed predictor if it can be expressed as a function of a subset of S. To do so, we need :

- **A compression set**  $S_{\mathbf{i}} \subseteq S$ , defined by a vector of indices  $\mathbf{i} = (i_1, \dots, i_{|\mathbf{i}|})$  such that  $1 \le i_1 \le \dots i_{|\mathbf{i}|} \le n$ . We denote its complement  $S_{\mathbf{i}^c} = S \setminus S_{\mathbf{i}}$ .
- 2. A reconstruction function  $\Re$  that takes a compression set and a message to output a predictor.

We denote a sample-compressed predictor  $\Re(S_i)$ .

#### **Example of sample compression: the SVM**

The **support vectors** of the SVM form its **compression set**.

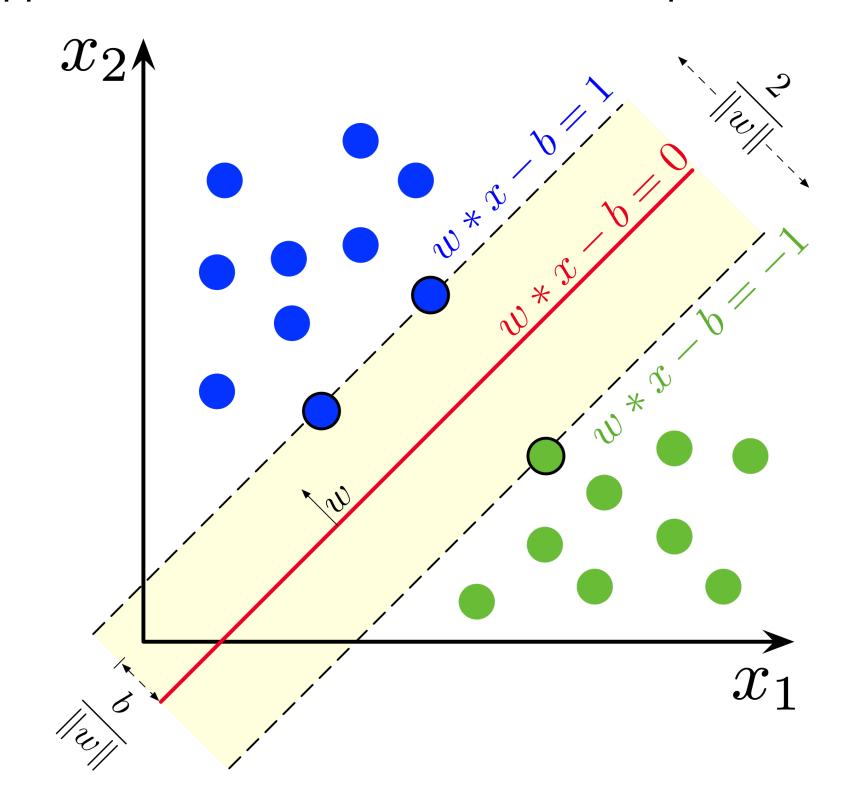


Figure 1. By Larhmam - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=73710028.

## Main results

We present new sample-compression generalization results that

- hold for any bounded losses and some unbounded losses,
- do not depend on the number of parameters of the neural network,
- are tight and easily computable.

These new results can be applied

with

- L. to classification problems, regression problems and more,
- 2. on a variety of models, such as **MLPs and transformers** (with the help of the meta-algorithm Pick-To-Learn [4]),

and still give tight and non-vacuous guarantees in practice.

## Theorem 1: New General Sample Compression bound

For any distribution  $\mathcal{D}$  over  $\mathcal{X} \times \mathcal{Y}$ , for any set of vectors of indices I, for any distribution  $P_I$  over I, for any comparator function  $\Delta : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$  and for any  $\delta \in (0,1]$ , with probability at least  $1 - \delta$  over the draw of  $S \sim \mathcal{D}^n$ , we have

$$\forall \mathbf{i} \in I : \Delta(\widehat{\mathcal{L}}_{S_{\mathbf{i}^c}}(\mathcal{R}(\mathbf{i})), \mathcal{L}_{\mathcal{D}}(\mathcal{R}(\mathbf{i}))) \leq \frac{1}{n - |\mathbf{i}|} \left[ \log \mathcal{E}_{\Delta}(n, \mathbf{i}) + \log \left( \frac{1}{P_I(\mathbf{i})\delta} \right) \right]$$

$$\mathcal{E}_{\Delta}(n, \mathbf{i}) = \underset{T_{\mathbf{i}} \sim \mathcal{D}^{|\mathbf{i}|}}{\mathbb{E}} \underset{T_{\mathbf{i}} \sim \mathcal{D}^{n-|\mathbf{i}|}}{\mathbb{E}} e^{(n-|\mathbf{i}|)\Delta\left(\widehat{\mathcal{L}}_{T_{\mathbf{i}}c}(\mathcal{R}(T_{\mathbf{i}})), \mathcal{L}_{\mathcal{D}}(\mathcal{R}(T_{\mathbf{i}}))\right)}.$$

In particular, this bound holds for the binary Kullback-Leibler divergence kl, which is **known to be optimal** for losses in the range [0, 1], as per the results of [3].

## **Corollary 1: Unbounded losses with the linear distance**

In the setting of Theorem 1, for any  $\lambda > 0$ , with  $\Delta_{\lambda}(q,p) = \lambda(p-q)$ , with a  $\sigma^2$ -sub-Gaussian loss function  $\ell: \mathcal{H} \times \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ , with probability at least  $1-\delta$  over the draw of  $S \sim \mathcal{D}^n$ , we have

$$\forall \mathbf{i} \in I : \mathcal{L}_{\mathcal{D}}(\mathcal{R}(S_{\mathbf{i}})) \leq \widehat{\mathcal{L}}_{S_{\mathbf{i}^c}}(\mathcal{R}(S_{\mathbf{i}})) + \frac{\lambda \sigma^2}{2} + \frac{1}{\lambda(n-|\mathbf{i}|)} \log \left(\frac{1}{P_I(\mathbf{i})\delta}\right).$$

### **Further extensions**

In the future, we will extend our work to:

- 1. **Any unbounded losses** under the hypothesis-dependent range condition [2]
- 2. Any unbounded losses under model-dependent assumptions [1]
- 3. Distributions with more general tail behaviors [5]

### **Experiments on Binary MNIST Problems**

- Dataset : Binary classification problems created from MNIST ( $\approx$ 11000 datapoints)
- Model type : CNN with 1.1 million parameters
- Training algorithm : Pick-To-Learn

| Dataset | Validation error | Test error      | kl bound         | $ \mathbf{i} $   | Baseline test error |
|---------|------------------|-----------------|------------------|------------------|---------------------|
| MNIST08 | $0.33{\pm}0.17$  | 0.25±0.10       | 5.05±0.16        | 92.0±3.6         | $0.22{\pm}0.05$     |
| MNIST17 | $0.20 \pm 0.08$  | $0.38\pm0.16$   | 4.33±0.21        | 84.0±5.2         | $0.17 \pm 0.03$     |
| MNIST23 | $0.39 \pm 0.12$  | $0.27\pm0.10$   | $8.20 \pm 0.34$  | 175.6±9.5        | $0.16 \pm 0.05$     |
| MNIST49 | $0.82 \pm 0.11$  | $0.77 \pm 0.17$ | $10.52 \pm 0.37$ | $237.0 \pm 11.0$ | $0.44 \pm 0.07$     |
| MNIST56 | $0.46 \pm 0.12$  | $0.47 \pm 0.15$ | 6.29±0.22        | 117.0±5.2        | $0.30 \pm 0.08$     |

Table 1. All metrics presented are in percents (%), with the exception of  $|\mathbf{i}|$ .

## Preliminary results on Amazon polarity

- 1. Dataset: **Binary classification problems** on Amazon Polarity dataset (we use 10%, 360000 datapoints)
- 2. Data type : **textual reviews**
- 3. Model type: DistilBERT [6] with 66 million parameters
- 4. Training algorithm: **Pre-training** on 50% of the dataset, then **Pick-To-Learn** on the other half.

| Train method | Train error   | Validation error | Test error    | kl bound   |
|--------------|---------------|------------------|---------------|------------|
| P2I          | $3.04\pm0.77$ | 3.66±0.84        | $5.18\pm0.14$ | 10.23±1.91 |
| Baseline     | $2.34\pm0.79$ | $3.24 \pm 0.82$  | 4.25±0.06     | _          |

Table 2. All metrics present are in percent (%). The results for the baseline were computed on 2 seeds instead of 5.

#### Conclusion

We presented a new general sample-compression theorem for real-valued losses and empirically verified its tightness for deep neural networks. In future experiments, we wish to tackle regression problems with the help of Corollary 1 and multi-class classification problems.

#### References

- [1] Ioar Casado, Luis A. Ortega, Andrés R. Masegosa, and Aritz Pérez. Pac-bayes-chernoff bounds for unbounded losses, 2024.
- [2] Maxime Haddouche, Benjamin Guedj, Omar Rivasplata, and John Shawe-Taylor. Pac-bayes unleashed: Generalisation bounds with unbounded losses. *Entropy*, 23(10):1330, 2021.
- [3] Fredrik Hellström and Benjamin Guedj. Comparing comparators in generalization bounds. In *International Conference on Artificial Intelligence and Statistics*, pages 73–81. PMLR, 2024.
- [4] Dario Paccagnan, Marco Campi, and Simone Garatti. The pick-to-learn algorithm: Empowering compression for tight generalization bounds and improved post-training performance. Advances in Neural Information Processing Systems, 36, 2024.
- [5] Borja Rodríguez-Gálvez, Ragnar Thobaben, and Mikael Skoglund. More pac-bayes bounds: From bounded losses, to losses with general tail behaviors, to anytime validity. *Journal of Machine Learning Research*, 25(110):1–43, 2024.
- [6] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter, 2020.