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Summary Main results

We present new sample-compression guarantees for any bounded losses and  We present new sample-compression generalization results that

validate empirically their tightness when applied to deep neural networks.
= hold for any bounded losses and some unbounded losses,

Background and notation = do not depend on the number of parameters of the neural network,
= are tight and easily computable.

1. Adataset S = {(x;,y;) }I; sampled i.i.d. from an unknown distribution D

hese new results can be applied

over X x V.
A family of predictor H of the form h: X — ). 1. to classification problems, regression problems and more,
A learning algorithm A that returns a predictor A(S) € H. . on a variety of models, such as MLPs and transformers (with the help of the meta-algorithm

Aloss function /: Hx A x)Y — R. Pick-To-Learn [4]),
The generalization loss of a predictor Lp(h) = E(, ,p {(h, ,y).
T

and still give tight and non-vacuous guarantees in practice.

o kW S

he empirical loss of a predictor £g(h) = Ly U(h, @i, yi).

Theorem 1: New General Sample Compression bound

Sample compression theory

A predictor is called a sample-compressed predictor if it can be expressed as 2 For any distribution D over X x Y, with P(n) the powersets of 1 to n, for any distribution Py,

function of a subset of S. To do so, we need : over P(n), for any comparator function A : R xR — R and for any § € (0, 1|, with probability at

least 1 — § over the draw of S ~ D" we have

1. Acompression set S; C S, defined by a vector of indices i = (i1, ..., i) T | |

such that 1 <4; < ...4; < n. Each i are contained in the powerset P(n) of Vi € P(n) - A(Z R . Lon(R(i ) < log £ : 1

i . . LD 1 < —(log CAlM,1) + 1O -

the numbers 1 to n. We denote its complement Sy = S\ S;. () sulR(1)), Lo(R() n — |i| | 5Ea(m, 1) +log Py, (i)0 )
2. Areconstruction function R that takes a compression set and a message h

to output a predictor. W a7

Exmi)= E E ® HALR(RT)LoRE))

We denote a sample-compressed predictor R(.S;). Ti~DM T D"

Example of sample compression : the SVM

L9 Corollary 1 : Optimal comparator function for bounded losses
In the setting of Theorem 1, for any loss function £ : H x X x Y — |0, 1], with probability at least
1 — 0 over the draw of S ~ D", we have
, . | 2./n — |1
Vie P(n) : Lp(R(S;)) < argsup kl(ﬁgic(iR(Si)),p> < —log / ‘ ‘ .
0<p<1 n — |i Py () (i)0
The binary Kullback-Leibler divergence kl is known to be optimal for losses in the range |0, 1] as
per the results of [3].
Corollary 2 : Unbounded losses with the linear distance
;\ n the setting of Theorem 1, for any A > 0, with Ax(q, p) = X(p — q), with a o*-sub-Gaussian loss
/% function /: H x X x Y — R, with probability at least 1 — 0 over the draw of S ~ D", we have
. __ o2 1 1
Figure 1. By Larhmam - Own work, CC BY-5A 4.0, Vi € T(n) : LD(CR(SI)) < £5ic(1R(Si)) | | ; 1()g : :
https:/commons.wikimedia.org/w/index.php?curid=/3/10028. 2 )\(Tl — ‘1|) Pj)(n)(l)5
Experiments
Amazon Polarity with DistilBERT Binary MNIST with a CNN
1. Dataset : Binary classification problems on Amazon Polarity dataset (we -~ KL bound — Seed 42
use 10%, i.e. 360000 datapoints). T el e
2. Model type : DistilBERT [6] with 66 million parameters. o :Zji
3. Training algorithm : Pre-training on 50% of the dataset, then Pick-To-Learn %
on the other half. o
Train method Train error Validation error Test error  kl bound Tl NS | NN
PiCk‘TO‘Learﬂ 473::109 541::105 560::119 1391::273 ™0 25 50 75 1(')0. 125 - 150 175 200 0 50 100 | 15q 200 250
Baseline 3.11£0.02 4.08+0.04 4.19+0.00 - rompression set siz€ rompression set siz€
(a) Behavior of the metrics for seed 1 (b) Behavior of the kl bound for all seeds
Table 1. All metrics present are in percent (%). Figure 2. lllustration of Corollary 1's bound behavior throughout Pick-To-Learn iterations for the

model that achieved the minimal Pick-To-Learn bound on the binarized MNIST dataset (4 vs 9).
We mark the minimal kl bound for each seed with a diamond (¢).
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