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Summary

We present new sample-compression guarantees for any bounded losses and

validate empirically their tightness when applied to deep neural networks.

Background and notation

1. A dataset S = {(xi, yi)}n
i=1 sampled i.i.d. from an unknown distribution D

over X × Y .

2. A family of predictor H of the form h : X → Y .

3. A learning algorithm A that returns a predictor A(S) ∈ H.

4. A loss function ` : H × X × Y → R.
5. The generalization loss of a predictor LD(h) = E(x,y)∼D `(h, x, y).
6. The empirical loss of a predictor L̂S(h) = 1

n

∑n
i=1 `(h, xi, yi).

Sample compression theory

A predictor is called a sample-compressed predictor if it can be expressed as a

function of a subset of S. To do so, we need :

1. A compression set Si ⊆ S, defined by a vector of indices i = (i1, . . . , i|i|)
such that 1 ≤ i1 ≤ . . . i|i| ≤ n. Each i are contained in the powerset P(n) of
the numbers 1 to n. We denote its complement Sic = S \ Si.

2. A reconstruction function R that takes a compression set and a message

to output a predictor.

We denote a sample-compressed predictor R(Si).

Example of sample compression : the SVM

Figure 1. By Larhmam - Own work, CC BY-SA 4.0,

https://commons.wikimedia.org/w/index.php?curid=73710028.

Main results

We present new sample-compression generalization results that

hold for any bounded losses and some unbounded losses,

do not depend on the number of parameters of the neural network,

are tight and easily computable.

These new results can be applied

1. to classification problems, regression problems and more,

2. on a variety of models, such as MLPs and transformers (with the help of the meta-algorithm

Pick-To-Learn [4]),

and still give tight and non-vacuous guarantees in practice.

Theorem 1 : NewGeneral Sample Compression bound

For any distribution D over X × Y , with P(n) the powersets of 1 to n, for any distribution PP(n)

over P(n), for any comparator function ∆ : R×R → R and for any δ ∈ (0, 1], with probability at

least 1 − δ over the draw of S ∼ Dn, we have

∀i ∈ P(n) : ∆
(
L̂Sic(R(i)), LD(R(i))

)
≤ 1

n − |i|

log E∆(n, i) + log
 1

PP(n)(i)δ




with

E∆(n, i) = E
Ti∼D|i|

E
Tic∼Dn−|i|

e(n−|i|)∆
(
L̂Tic(R(Ti)),LD(R(Ti))

)
.

Corollary 1 : Optimal comparator function for bounded losses

In the setting of Theorem 1, for any loss function ` : H × X × Y → [0, 1], with probability at least
1 − δ over the draw of S ∼ Dn, we have

∀i ∈ P(n) : LD(R(Si)) ≤ arg sup
0≤p≤1

kl
(
L̂Sic(R(Si)), p

)
≤ 1

n − |i|
log

2
√

n − |i|
PP(n)(i)δ


 .

The binary Kullback-Leibler divergence kl is known to be optimal for losses in the range [0, 1] as
per the results of [3].

Corollary 2 : Unbounded losses with the linear distance

In the setting of Theorem 1, for any λ > 0, with ∆λ(q, p) = λ(p − q), with a σ2-sub-Gaussian loss

function ` : H × X × Y → R, with probability at least 1 − δ over the draw of S ∼ Dn, we have

∀i ∈ P(n) : LD(R(Si)) ≤ L̂Sic(R(Si)) +
λσ2

2
+ 1

λ(n − |i|)
log

 1
PP(n)(i)δ

.

Experiments

Amazon Polaritywith DistilBERT

1. Dataset : Binary classification problems on Amazon Polarity dataset (we

use 10%, i.e. 360000 datapoints).

2. Model type : DistilBERT [6] with 66 million parameters.

3. Training algorithm : Pre-training on 50% of the dataset, then Pick-To-Learn

on the other half.

Train method Train error Validation error Test error kl bound

Pick-To-Learn 4.73±1.09 5.41±1.05 5.60±1.19 13.91±2.73

Baseline 3.11±0.02 4.08±0.04 4.19±0.00 -

Table 1. All metrics present are in percent (%).

Binary MNISTwith a CNN

(a) Behavior of the metrics for seed 1 (b) Behavior of the kl bound for all seeds

Figure 2. Illustration of Corollary 1’s bound behavior throughout Pick-To-Learn iterations for the

model that achieved the minimal Pick-To-Learn bound on the binarized MNIST dataset (4 vs 9).

We mark the minimal kl bound for each seed with a diamond (�).

Further extensions and conclusion

In the future, we will extend our work to any:

1. Unbounded losses under the hypothesis-dependent range condition [2],

2. Unbounded losses under model-dependent assumptions [1],

3. Distributions with more general tail behaviors [5].

In conclusion, we presented a new general sample-compression theorem for

real-valued losses and empirically verified its tightness for deep neural

networks. In future experiments, we wish to tackle regression problems with

the help of Corollary 2. Find the paper here!
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