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Summary Main results

We present new sample-compression guarantees for any bounded We present new sample-compression generalization results that

losses and validate empirically their tightness when applied to DNNs. - hold for any bounded losses and some unbounded losses

Background and notation = do not depend on the number of parameters of the neural network,
= are tight and easily computable.

1. Adataset S = {(x;,y;)}}"_; sampled i.i.d. from an unknown

distribution D over X x . These new results can be applied
2. A family of predictor H of the form h: X — V. 1. to classification problems, regression problems and more,
3. Alearning algorithm A that returns a predictor A(S) € H. 2. on a variety of models, such as MLPs and transformers (with the help of the
4. Aloss function ¢ H x X x Y — R. meta-algorithm Pick-To-Learn [4]),
5. The generalization loss of a predictor Lp(h) = E, . pl(h,®,y).  and still give tight and non-vacuous guarantees in practice.
6. The empirical loss of a predictor /:‘S(h) = %2?21 O(h, x;, ;).

Theorem 1: New General Sample Compression bound

Sample compression theory

A predictor is called a sample-compressed predictor if it can be ex-
pressed as a function of a subset of S. To do so, we need :

For any distribution D over X x Y, with P(n) the powersets of 1 to n, for any dis-
tribution Pp(,,y over P(n), for any comparator function A : R x R — R and for any

6 € (0,1], with probability at least 1 — ¢ over the draw of S ~ D", we have
1. A.compression set S5; C S, defined by a vector of indices

i=(11,... ,im) such that 1 <41 < i S Fach i are contained Vi€ T(n) : ) )
in the powerset P(n) of the numbers 1 to n. We denote its ~ : : 1 : 1
complement Sie = S\ S;. A(Esic(jz(l»’ L:D(R(l))) < n — ’1‘ log gA(n’ 1) +log (P:P(n)(i)5

2. A reconstruction function R that takes a compression set and a with _ _
message to output a predictor. . (n—IiI)A(ZT.C(R(Ti)),ED(R(Ti))>

We denote a sample-compressed predictor R(.S;). Ealn,i)= E £ e : '

Ti~Dlil Ticmpn—\il

Example of sample compression : the SVM
ToA . In particular, this bound holds for the binary Kullback-Leibler divergence kl, which is

known to be optimal for losses in the range [0, 1], as per the results of [3].

Corollary 1: Unbounded losses with the linear distance

In the setting of Theorem 1, for any A > 0, with Ay (g, p) = A(p — q), with a o°-sub-
Gaussian loss function ¢ : H x X x Y — R, with probability at least 1 — § over the
draw of S ~ D" we have

Vie P(n)
4 £o(R(S) < Esu(R(S) + 20 + L log (.
i)) S Lg. i)) | — 10 - :
P i > " An—li)) "\ Ppoy()d

Figure 1. By Larhmam - Own work, CC BY-SA 4.0,

https:/commons.wikimedia.org/w/index.php?curid=/3710028.

Experiments
Amazon Polarity with DistilBERT Binary MNIST with a CNN

1. Dataset : Binary classification problems on Amazon Polarity dataset
(we use 10%, 360000 datapoints)

2. Model type : DistilBERT [6] with 66 million parameters

3. Training algorithm : Pre-training on 50% of the dataset, then
Pick-To-Learn on the other half.
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----= KL bound
— Test error
-------- Train error

KL bound
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Train method Train error Validation error Test error  kl bound , . N AV A
Pick-To-Learn 4./34+1.09 5414+1.05 5604+1.192 13.914+2.73 0.03 25 50 75 100 125 150 175 200 0 50 100 150 200 250

Baseline  3.11+0.02  4.08+0.04  4.1940.00 - rompression setsie rompression setse
(a) Behavior of the metrics for seed 1 (b) Behavior of the kl bound for all seeds
Table 1. All metrics present are in percent (%). Figure 2. lllustration of the behavior of the metrics throughout Pick-To-Learn iterations for the five

seeds that achieved the minimal Pick-To-Learn bound on MNIST49. We mark the minimal kl bound for
each seed with a diamond (¢).
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