
Sample Compression Hypernetworks:
From Generalization Bounds to Meta-Learning

Benjamin Leblanc1, Mathieu Bazinet1, Nathaniel D’Amours1, Alexandre Drouin1,2, Pascal Germain1
1Département d’informatique et de génie logiciel, Université Laval, Québec, Canada

2ServiceNow Research, Montréal, Canada

Sample Compression Hypernetworks:
From Generalization Bounds to Meta-Learning

Benjamin Leblanc1, Mathieu Bazinet1, Nathaniel D’Amours1, Alexandre Drouin1,2, Pascal Germain1
1Département d’informatique et de génie logiciel, Université Laval, Québec, Canada

2ServiceNow Research, Montréal, Canada

Contributions

➊ We generalize sample compression bounds to continuous messages;

➋ We present an original approach to sample compression by learning
the reconstruction function, seeing it as a hypernetwork;

➌ We propose an algorithm to meta-learn the generation of predictors
with sample compression generalization guarantees.

Sample compression

The setting

❍ A data-generating distribution D over an instance space X ×Y ;
❍ A dataset S = {(xj, yj)}mj=1 ∼ Dm;
❍ A predictor h : X → Y and a learning algorithm A(S) 7→ h;
❍ The empirical loss L̂S(h) =

1
m

∑m
j=1 ℓ(h(xj), yj), with ℓ :Y×Y→R;

❍ The generalization loss LD(h) = E(x,y)∼D [ℓ(h(x), y)].

The reconstruction function

In the sample compression framework, a learned predictor A(S) can
be fully defined by a reconstruction function R, a compression set Sj

and a message σ, such that R(Sj,σ) = A(S).
Compression set

Sj ⊆ S, with train indexes
j ∈ P(m), chosen from the
power set of m={i}mi=1

Message
σ ∈ Σ, where Σ is a the set
of all possible messages.

First sample compression bound for uncountable sets Σ

The theorem below bounds the generalization loss LD(h) from the
empirical loss L̂S(h) and two complexity terms: the compression set
size |j| and the KL divergence between a prior PΣ and a posterior QΣ

distributions over messages.

➊Theorem 1 For any distribution D over X ×Y , for any set J ⊆ P(m), for any distribution
PJ over J , for any distribution PΣ over Σ, for any reconstruction function R, for any loss
ℓ : Y ×Y → [0, 1], for any convex function ∆ : [0, 1]× [0, 1] → R and for any δ ∈ (0, 1], with
probability at least 1− δ over the draw of S ∼ Dm, we have that for all j ∈ J and QΣ over Σ:

∆

(
E

σ∼QΣ

L̂Sj
(R(Sj,σ)), E

σ∼QΣ

LD(R(Sj,σ))

)
≤ 1

m− |j|

[
KL(QΣ||PΣ) + ln

(
J∆(m− |j|)
PJ(j) · δ

)]
,

with

J∆(m− |j|) = E
σ∼PΣ

E
Tj∼D|j|

E
Tj∼Dm−|j|

e
(m−|j|)·∆

(
L̂T

j
(R(Tj,σ)),LD(R(Tj,σ))

)
.

Sample compression hypernetworks

➋We propose learning the reconstruction function.

Our reconstruction hypernetwork γ = Rθ(Sj,σσσ) takes two inputs:

• A compression set Sj containing a fixed number c examples;

•A message σσσ taking the form of a vector of fixed size b, either
real-valued (σσσ ∈ [−1, 1]b) , or discrete (σσσ ∈ {−1, 1}b ).

The output γ ∈ R|γ| is the parameters of a downstream network:

hγ : X → Y .

Objective function: Minimize the empirical loss of the downstream
predictor hγ on the complement set S\Sj :

min
θ

 1

m− |j|
∑

(x,y)∈S\Sj

ℓ
(
hγ(x), y

) ∣∣∣∣∣ γ = Rθ(Sj,σσσ)

 .

From sample compression to meta-learning

The setting

❍ A meta-distribution D, such that Di ∼ D ;
❍ A meta-dataset S = {Si}ni=1, where Si ∼ Dm

i ;
❍ Each Si is split into support set Ŝi⊂Si and query set T̂i = Si\Ŝi.

The proposed meta-learning algorithm

➌ Let Cϕ be a sample compressor and Mψ a message compressor .
Given a query set Ŝ, these respectively yield the compression
set and the message used by the reconstruction hypernetwork to
obtain the parameters γ of a downstream predictor:

γ = Rθ

(
Cϕ(Ŝ),Mψ(Ŝ)

)
.

We propose to optimize the following meta-learning objective:

min
θ,ϕ,ψ

1

n

n∑
i=1

1

mi−|Ŝi|

∑
(x,y)∈T̂i

ℓ
(
hγi(x), y

)∣∣∣∣∣γi=Rθ

(
Cϕ(Ŝi),Mψ(Ŝi)

),

Numerical experiments

We generated 300 tasks of 200 examples using the following pipeline:

The generated predictor is a single-hidden-layer (of 5 neurons) ReLU
MLP. Decision boundaries on three test tasks below © (stars ⋆
indicate the compression set examples).

The obtained zero-one loss on 100 test tasks and sample-compressed
loss bounds show promising results ©.

✓Message size ↑ ⇒ test loss ↓ , generalization bound ↘ ↗
✓Compression set size ↑ ⇒ test loss ↓ , generalization bound ↘ ↗
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