UNIVERSITÉ

From Generalization Bounds to Meta-Learning

Benjamin Leblanc¹, Mathieu Bazinet¹, Nathaniel D'Amours¹, Alexandre Drouin^{1,2}, Pascal Germain¹ ¹Département d'informatique et de génie logiciel, Université Laval, Québec, Canada

²ServiceNow Research, Montréal, Canada

Contributions

- We generalize sample compression bounds to continuous messages;
- **2** We present an original approach to sample compression by learning the reconstruction function, seeing it as a hypernetwork;
- ³ We propose an algorithm to meta-learn the generation of predictors with sample compression generalization guarantees.

Sample compression

The setting

 \bigcirc A data-generating distribution \mathcal{D} over an instance space $\mathcal{X} \times \mathcal{Y}$; \bigcirc A dataset $S = \{(\mathbf{x}_j, y_j)\}_{j=1}^m \sim \mathcal{D}^m;$

From sample compression to meta-learning

The setting

 \bigcirc A meta-distribution **D**, such that $\mathcal{D}_i \sim \mathbf{D}$; • A meta-dataset $\mathbf{S} = \{S_i\}_{i=1}^n$, where $S_i \sim \mathcal{D}_i^m$; \bigcirc Each S_i is split into support set $\hat{S}_i \subset S_i$ and query set $\hat{T}_i = S_i \setminus \hat{S}_i$.

The proposed meta-learning algorithm

③ Let \mathcal{C}_{ϕ} be a sample compressor and \mathcal{M}_{ψ} a message compressor. Given a query set \hat{S} , these respectively yield the compression set and the message used by the reconstruction hypernetwork to obtain the parameters γ of a downstream predictor:

$$\gamma = \mathcal{R}_{\theta} \left(\mathcal{C}_{\phi}(\hat{S}), \mathcal{M}_{\psi}(\hat{S}) \right).$$

 \bigcirc A predictor $h : \mathcal{X} \to \mathcal{Y}$ and a learning algorithm $A(S) \mapsto h$; • The empirical loss $\widehat{\mathcal{L}}_S(h) = \frac{1}{m} \sum_{j=1}^m \ell(h(\mathbf{x}_j), y_j)$, with $\ell : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$; • The generalization loss $\mathcal{L}_{\mathcal{D}}(h) = \mathbb{E}_{(\mathbf{x},y)\sim\mathcal{D}} [\ell(h(\mathbf{x}), y)].$

The reconstruction function

In the sample compression framework, a learned predictor A(S) can be fully defined by a reconstruction function \mathcal{R} , a compression set S_{i} and a message $\boldsymbol{\sigma}$, such that $\mathcal{R}(S_{\mathbf{i}}, \boldsymbol{\sigma}) = A(S)$.

– Compression set – Message $S_{\mathbf{j}} \subseteq S$, with train indexes $\boldsymbol{\sigma} \in \Sigma$, where Σ is a the set $\mathbf{j} \in \mathcal{P}(\mathbf{m})$, chosen from the power set of $\mathbf{m} = \{i\}_{i=1}^{m}$

of all possible messages.

First sample compression bound for uncountable sets Σ

The theorem below bounds the generalization loss $\mathcal{L}_{\mathcal{D}}(h)$ from the empirical loss $\mathcal{L}_{S}(h)$ and two complexity terms: the compression set size $|\mathbf{j}|$ and the KL divergence between a prior P_{Σ} and a posterior Q_{Σ} distributions over messages.

Theorem 1 For any distribution \mathcal{D} over $\mathcal{X} \times \mathcal{Y}$, for any set $J \subseteq \mathcal{P}(\mathbf{m})$, for any distribution P_J over J, for any distribution P_{Σ} over Σ , for any reconstruction function \mathcal{R} , for any loss $\ell: \mathcal{Y} \times \mathcal{Y} \to [0,1]$, for any convex function $\Delta: [0,1] \times [0,1] \to \mathbb{R}$ and for any $\delta \in (0,1]$, with probability at least $1 - \delta$ over the draw of $S \sim \mathcal{D}^m$, we have that for all $\mathbf{j} \in J$ and Q_{Σ} over Σ :

 $\Delta \left(\mathbb{E}_{\boldsymbol{\sigma} \sim Q_{\Sigma}} \widehat{\mathcal{L}}_{S_{\overline{\mathbf{j}}}}(\boldsymbol{\mathcal{R}}(S_{\mathbf{j}}, \boldsymbol{\sigma})), \mathbb{E}_{\boldsymbol{\sigma} \sim Q_{\Sigma}} \mathcal{L}_{\mathcal{D}}(\boldsymbol{\mathcal{R}}(S_{\mathbf{j}}, \boldsymbol{\sigma})) \right) \leq \frac{1}{m - |\mathbf{j}|} \left[\mathrm{KL}(Q_{\Sigma} || P_{\Sigma}) + \ln \left(\frac{\mathcal{J}_{\Delta}(m - |\mathbf{j}|)}{P_{J}(\mathbf{j}) \cdot \delta} \right) \right],$

We propose to optimize the following meta-learning objective:

Numerical experiments

We generated 300 tasks of 200 examples using the following pipeline:

The generated predictor is a single-hidden-layer (of 5 neurons) ReLU MLP. Decision boundaries on three test tasks below \checkmark (stars \star indicate the compression set examples).

$\mathcal{J}_{\Delta}(m - |\mathbf{j}|) = \mathbb{E}_{\boldsymbol{\sigma} \sim P_{\Sigma}} \mathbb{E}_{T_{\mathbf{j}} \sim \mathcal{D}^{|\mathbf{j}|}} \mathbb{E}_{T_{\mathbf{j}} \sim \mathcal{D}^{m-|\mathbf{j}|}} e^{(m - |\mathbf{j}|) \cdot \Delta \left(\widehat{\mathcal{L}}_{T_{\mathbf{j}}}(\mathcal{R}(T_{\mathbf{j}}, \boldsymbol{\sigma})), \mathcal{L}_{\mathcal{D}}(\mathcal{R}(T_{\mathbf{j}}, \boldsymbol{\sigma}))\right)}$

Sample compression hypernetworks

2 We propose learning the reconstruction function.

Our reconstruction hypernetwork $\gamma = \mathcal{R}_{\theta}(S_{j}, \sigma)$ takes two inputs:

• A compression set S_i containing a fixed number c examples;

• A message σ taking the form of a vector of fixed size b, either real-valued ($\boldsymbol{\sigma} \in [-1, 1]^b$), or discrete ($\boldsymbol{\sigma} \in \{-1, 1\}^b$).

The output $\gamma \in \mathbb{R}^{|\gamma|}$ is the parameters of a *downstream network*:

$$h_{\gamma}: \mathcal{X} \to \mathcal{Y}$$

Objective function: Minimize the empirical loss of the downstream predictor h_{γ} on the complement set $S \setminus S_i$:

$$\min_{\boldsymbol{\theta}} \left\{ \frac{1}{m - |\mathbf{j}|} \sum_{(\mathbf{x}, y) \in S \setminus S_{\mathbf{j}}} \ell(h_{\gamma}(\mathbf{x}), y) \mid \gamma = \mathcal{R}_{\boldsymbol{\theta}}(S_{\mathbf{j}}, \boldsymbol{\sigma}) \right\}.$$

The obtained zero-one loss on 100 test tasks and sample-compressed loss bounds show promising results \mathcal{P} .

 \Rightarrow test loss \downarrow , generalization bound \searrow \nearrow ✓ Message size \uparrow ✓ Compression set size $\uparrow \Rightarrow$ test loss \downarrow , generalization bound \searrow \nearrow

ArXiv:

Contact: benjamin.leblanc.2@ulaval.ca