Articles
Generalization Bounds via Meta-Learned Model Representations: PAC-Bayes and Sample Compression Hypernetworks.
Benjamin Leblanc, Mathieu Bazinet, Nathaniel D'Amours, Alexandre Drouin, Pascal Germain
Publié dans la conférence ICML 2025.
Version longue du papier Sample Compression Hypernetworks: From Generalization Bounds to Meta-Learning.
Version arXiv du papier
Sample Compression Unleashed : New Generalization Bounds for Real Valued Losses.
Mathieu Bazinet, Valentina Zantedeschi, Pascal Germain
Publié dans la conférence AISTATS 2025.
Forum OpenReview Version arXiv du papier Code du papier
Application of machine learning tools to study the synergistic impact of physicochemical properties of peptides and filtration membranes on peptide migration during electrodialysis with filtration membranes
Zain Sanchez-Reinoso, Mathieu Bazinet, Benjamin Leblanc, Jean-Pierre Clément, Pascal Germain, Laurent Bazinet.
Publié dans le journal Separation and Purification Technology en décembre 2024.
Lien vers le papier Code du papier
How peptide migration and fraction bioactivity are modulated by electrical current modes during separation by an electromembrane process: A comprehensive machine learning-based peptidomic approach.
Aurore Cournoyer, Mathieu Bazinet, Jean-Pierre Clément, Pier-Luc Plante, Ismail Fliss, Laurent Bazinet.
Publié dans le journal Food Research International en novembre 2024.
Lien vers le papier Code du papier